Stress-Inducible Overexpression of SlDDF2 Gene Improves Tolerance against Multiple Abiotic Stresses in Tomato Plant

نویسندگان

چکیده

Dehydration-responsive element-binding protein 1 (DREB1)/C-repeat binding factor (CBF) family plays a key role in plant tolerance against different abiotic stresses. In this study, an orthologous gene of the DWARF AND DELAYED FLOWERING (DDF) members Arabidopsis, SlDDF2, was identified tomato plants. The SlDDF2 expression analyzed, and clear induction response to ABA treatment, cold, salinity, drought stresses observed. Furthermore, two transgenic lines (SlDDF2-IOE#6 SlDDF2-IOE#9) with stress-inducible overexpression under Rd29a promoter were generated. Under stress conditions, significantly higher both lines. growth performance, as well physiological parameters, evaluated wild-type showed retardation phenotypes had chlorophyll content conditions However, relative decrease performance (plant height, leaf number, area) stressed lower than that plants, compared nonstressed conditions. reduction water loss rate also Compared enhanced including deficit, cold. conclusion, can be useful tool improve multiple

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HyPRP1 Gene Suppressed by Multiple Stresses Plays a Negative Role in Abiotic Stress Tolerance in Tomato

Many hybrid proline-rich protein (HyPRP) genes respond to biotic and abiotic stresses in plants, but little is known about their roles other than as putative cell-wall structural proteins. A HyPRP1 gene encodes a protein with proline-rich domain, and an eight-cysteine motif was identified from our previous microarray experiments on drought-tolerant tomato. In this study, the expression of the H...

متن کامل

Overexpression of AtOxR gene improves abiotic stresses tolerance and vitamin C content in Arabidopsis thaliana

BACKGROUND Abiotic stresses are serious threats to plant growth, productivity and result in crop loss worldwide, reducing average yields of most major crops. Although abiotic stresses might elicit different plant responses, most induce the accumulation of reactive oxygen species (ROS) in plant cells leads to oxidative damage. L-ascorbic acid (AsA, vitamin C) is known as an antioxidant and H2O2-...

متن کامل

Overexpression of SlGRAS40 in Tomato Enhances Tolerance to Abiotic Stresses and Influences Auxin and Gibberellin Signaling

Abiotic stresses are major environmental factors that inhibit plant growth and development impacting crop productivity. GRAS transcription factors play critical and diverse roles in plant development and abiotic stress. In this study, SlGRAS40, a member of the tomato (Solanum lycopersicum) GRAS family, was functionally characterized. In wild-type (WT) tomato, SlGRAS40 was upregulated by abiotic...

متن کامل

Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses

Calmodulin-like (CML) proteins are important Ca(2+) sensors, which play significant role in mediating plant stress tolerance. In the present study, cold responsive calmodulin-like (ShCML44) gene was isolated from cold tolerant wild tomato (Solanum habrochaites), and functionally characterized. The ShCML44 was differentially expressed in all plant tissues including root, stem, leaf, flower and f...

متن کامل

Overexpression of a New Osmotin-Like Protein Gene (SindOLP) Confers Tolerance against Biotic and Abiotic Stresses in Sesame

Osmotin-like proteins (OLPs), of PR-5 family, mediate defense against abiotic, and biotic stresses in plants. Overexpression in sesame of an OLP gene (SindOLP), enhanced tolerance against drought, salinity, oxidative stress, and the charcoal rot pathogen. SindOLP was expressed in all parts and localized to the cytosol. The transgenic plants recovered after prolonged drought and salinity stress,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Horticulturae

سال: 2022

ISSN: ['2311-7524']

DOI: https://doi.org/10.3390/horticulturae8030230